Benha University<br>Faculty of Engineering<br>Shoubra<br>\section*{Antennas \&Wave Propagation Electrical Eng. Dept.<br><br>$4^{\text {th }}$ year communication<br><br>2013-2014}

## Sheet (3)-solution

1. The maximum radiation intensity of a $90 \%$ efficiency antenna is 200 $\mathrm{mW} /$ unit solid angle. Find the directivity and gain (dimensionless and in $d B$ ) when the
(a) Input power is 125.66 mW
(b) Radiated power is 125.66 mW

$$
\begin{aligned}
\text { (a) } D_{0} & =\frac{4 \pi U_{\max }}{\overline{P_{\text {rad }}}}=\frac{4 \pi\left(200 \times 10^{-3}\right)}{0.9\left(125.66 \times 10^{-3}\right)}=22.22=13.47 \mathrm{~dB} \\
G_{0} & =\epsilon_{\star} \cdot D_{0}=0.9(22.22)=20=13.01 \mathrm{~dB} \\
\text { (b) } D_{0} & =\frac{4 \pi U_{\max }}{P_{\text {rad }}}=\frac{4 \pi\left(200 \times 10^{-3}\right)}{\left(125.66 \times 10^{-3}\right)}=20=13.01 \mathrm{~dB} \\
G_{0} & =\epsilon_{\star} \cdot D_{0}=0.9 \cdot(20)=18=12.55 \mathrm{~dB}
\end{aligned}
$$

2. A lossless resonant half-wavelength dipole antenna, with input impedance of 73 ohms, is connected to a transmission line whose characteristic impedance is 50 ohms . Assuming that the pattern of the antenna is given approximately by $U=B_{0} \sin ^{3} \theta$. Find the maximum gain and maximum absolute gain of this antenna.

$$
\begin{aligned}
\left.U\right|_{\max } & =U_{\max }=B_{0} \\
P_{\mathrm{rad}} & =\int_{0}^{2 \pi} \int_{0}^{\pi} U(\theta, \phi) \sin \theta d \theta d \phi=2 \pi B_{0} \int_{0}^{\pi} \sin ^{4} \theta d \theta=B_{0}\left(\frac{3 \pi^{2}}{4}\right) \\
D_{0} & =4 \pi \frac{U_{\max }}{P_{\mathrm{rad}}}=\frac{16}{3 \pi}=1.697
\end{aligned}
$$

Since the antenna was stated to be lossless, then the radiation efficiency $e_{c d}=1$.

$$
G_{0}=e_{c d} D_{0}=1(1.697)=1.697
$$

$$
e_{r}=\left(1-|\Gamma|^{2}\right)=\left(1-\left|\frac{73-50}{73+50}\right|^{2}\right)=0.965
$$

$$
G_{0 a b s}=e_{0} D_{0}=0.965(1.697)=1.6376
$$

## Benha University <br> Faculty of Engineering <br> Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept.
$4^{\text {th }}$ year communication 2013-2014
3. A uniform plane wave, of is traveling in the positive $z$-direction. Find the polarization (linear, circular, or elliptical), sense of rotation (CW or CCW), when
(a) $E x=E y, \Delta \varphi=\varphi y-\varphi x=0$
(b) $\mathrm{Ex} \neq \mathrm{Ey}, \Delta \varphi=\varphi \mathrm{y}-\varphi \mathrm{x}=0$
(c) $\mathrm{Ex}=\mathrm{Ey}, \Delta \varphi=\varphi \mathrm{y}-\varphi \mathrm{x}=\pi / 2$
(d) $E x=E y, \Delta \varphi=\varphi y-\varphi x=-\pi / 2$
(e) $\mathrm{Ex}=\mathrm{Ey}, \Delta \varphi=\varphi \mathrm{y}-\varphi \mathrm{x}=\pi / 4$
(f) $E x=E y, \Delta \varphi=\varphi y-\varphi x=-\pi / 4$
(g) $\mathrm{Ex}=0.5 \mathrm{Ey}, \Delta \varphi=\varphi \mathrm{y}-\varphi \mathrm{x}=\pi / 2$
(h) $E x=0.5 E y, \Delta \varphi=\varphi y-\varphi x=-\pi / 2$
(a) Linear because $\Delta \phi=0$.
(b) Linear because $\Delta \phi=0$.
(c) Circular because 1. $E_{x}=E_{y}$
2. $\Delta \phi=\pi / 2 \quad$ COW
(d) Circular because 1. $E_{x}=E_{y}$
2. $\Delta \varnothing=-\pi / 2 \quad C W$
(e) Elliptical because $\Delta \varnothing$ is not multiples of $\pi / 2$. CCW
(f) Elliptical because $\Delta \phi$ is not multiples of $\pi / 2$ CW
:.g). Elliptical because 1. $E_{x} \neq E_{y}$
2. $\Delta \varnothing$ is not zero or multiples of $\pi$.

CW
(h) Elliptical because 1. $E_{x} \neq E_{y}$
2. $\Delta \varnothing$ is not zero or multiples of $\pi$.

## CW

4. A wave traveling normally outward from the page (toward the reader) is the resultant of two elliptically polarized waves, one with components of E given by:

$$
\begin{aligned}
\mathscr{E}_{y}^{\prime} & =3 \cos \omega t \\
\mathscr{E}_{x}^{\prime} & =7 \cos \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

And the other with components given by:

## Benha University <br> Faculty of Engineering <br> Shoubra

## Antennas \&Wave Propagation Electrical Eng. Dept. <br> $4^{\text {th }}$ year communication <br> 2013-2014

$$
\begin{aligned}
& \mathscr{E}_{y}^{\prime \prime}=2 \cos \omega t \\
& \mathscr{E}_{x}^{\prime \prime}=3 \cos \left(\omega t-\frac{\pi}{2}\right)
\end{aligned}
$$

(a) What is the axial ratio of the resultant wave?
(b) Does the resultant vector E rotate clockwise or counterclockwise?

$$
\text { (a) } \begin{aligned}
E_{y}=E_{y}^{\prime}+E_{y}^{\prime \prime} & =3 \cos \omega t+2 \cos \omega t=5 \cos \omega t \\
E_{x}=E_{x}^{\prime}+E_{x}^{\prime \prime} & =7 \cos \left(\omega t+\frac{\pi}{2}\right)+3 \cos \left(\omega t-\frac{\pi}{2}\right) \\
& =-7 \sin \omega t+3 \sin \omega t=-4 \sin \omega t
\end{aligned}
$$

$$
A R=\frac{5}{4}=1.25
$$

(b) At $\omega t=0, \vec{E}=5 \hat{a}_{y}$

$$
\text { At } \omega t=\pi / 2 \Rightarrow \vec{E}=-4 \hat{a}_{x} \Rightarrow \text { Rotation in CCW }
$$

5. Design an antenna with omnidirectional amplitude pattern with a halfpower beam width of $90^{\circ}$, Express its radiation intensity by $\mathrm{U}=\operatorname{Sin}^{\mathrm{n}} \theta$. Determine the value of n and attempt to identify elements that exhibit such a pattern. Determine the directivity of the antenna.
Solution: Since the half-power beamwidth is $90^{\circ}$, the angle at which the half-power point occurs is $\theta=45^{\circ}$. Thus

$$
U\left(\theta=45^{\circ}\right)=0.5=\sin ^{n}\left(45^{\circ}\right)=(0.707)^{n}
$$

or

$$
n=2
$$

$U_{\text {max }}=1$
$P_{\mathrm{rad}}=\int_{0}^{2 \pi} \int_{0}^{\pi} \sin ^{2} \theta \sin \theta d \theta d \phi=\frac{8 \pi}{3}$
$D_{0}=\frac{4 \pi}{8 \pi / 3}=\frac{3}{2}=1.761 \mathrm{~dB}$
6. The normalized far-zone field pattern of an antenna is given by

Benha University
Faculty of Engineering
Shoubra

## Antennas \&Wave Propagation Electrical Eng. Dept. <br> $4^{\text {th }}$ year communication <br> 2013-2014

$$
E= \begin{cases}\left(\sin \theta \cos ^{2} \phi\right)^{1 / 2} & 0 \leq \theta \leq \pi \text { and } 0 \leq \phi \leq \pi / 2,3 \pi / 2 \leq \phi \leq 2 \pi \\ 0 & \text { elsewhere }\end{cases}
$$

Find the directivity using
(a) The exact expression
(b) Kraus' approximate formula

$$
U=\frac{1}{2 \eta}|E|^{2}=\frac{1}{2 \eta} \sin \theta \cos ^{2} \phi \Rightarrow U_{\max }=\frac{1}{2 \eta}
$$

(a). $P_{\text {rad }}=2 \cdot \int_{0}^{\pi / 2} \int_{0}^{\pi} \frac{1}{2 \eta} \sin ^{2} \theta \cos ^{2} \phi d \theta d \phi=\frac{1}{\eta}\left(\frac{\pi}{4}\right)\left(\frac{\pi}{2}\right)=\frac{\pi^{2}}{8 \eta}$
$D_{0}=\frac{4 \pi U_{\max }}{P_{\mathrm{rad}}}=\frac{4 \pi\left(\frac{1}{2 \eta}\right)}{\frac{\pi^{2}}{8 \eta}}=\frac{16}{\pi}=5.09=7.07 \mathrm{~dB}$
(b). $U_{\text {max }}=\frac{1}{2 \eta}$ at $\theta=\pi / 2, \phi=0$

In the elevation plane through the maximum $\phi=0$ and $u=\frac{1}{2 \eta} \sin \theta$.
The 3-dB point occurs when
$u=0.5 u_{\text {max }}=0.5\left(\frac{1}{2 \eta}\right)=\frac{1}{2 \eta} \sin \theta_{1} \Rightarrow \theta_{1}=\sin ^{-1}(0.5)=30^{\circ}$
Therefore $\Theta_{10}=2(90-30)=120^{\circ}$
In the azimuth plane through the moximum $\theta=\pi / 2$ and $u=\frac{1}{2 \eta} \cos ^{2} \phi$.
The $3-d B$ point occurs when $u=0.5 u_{\text {max }}=0.5\left(\frac{1}{2 \eta}\right)=\frac{1}{2 \eta} \cos ^{2} \theta_{1} \Rightarrow$

$$
\phi_{1}=\cos ^{-1}(0.707)=45^{\circ}, \quad\left(\theta_{2 d}=2\left(90^{\circ}-45^{\circ}\right)=90^{\circ} .\right.
$$

Therefore using Kraus' formula $D_{0} \simeq \frac{41,253}{120 .(90)}=3.82=5.82 \mathrm{~dB}$

## REPORT

1. The normalized radiation intensity of an antenna is represented by

$$
U(\theta)=\cos ^{2}(\theta) \cos ^{2}(3 \theta), \quad\left(0 \leq \theta \leq 90^{\circ}, \quad 0^{\circ} \leq \phi \leq 360^{\circ}\right)
$$

Find the exact and approximate directivity.
2. The radiation intensity is represented by

$$
U= \begin{cases}U_{0} \sin (\pi \sin \theta), & 0 \leq \theta \leq \pi / 2 \text { and } 0 \leq \phi \leq 2 \pi \\ 0 & \text { elsewhere }\end{cases}
$$

Find $\theta_{\mathrm{HP}}$ and draw the radiation pattern.

## Good Luck

